
www.advelectronicmat.de

2101198  (1 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

Research Article

Differentiable Content Addressable Memory with Memristors

Giacomo Pedretti,* Catherine E. Graves,* Thomas Van Vaerenbergh, Sergey Serebryakov,
Martin Foltin, Xia Sheng, Ruibin Mao, Can Li, and John Paul Strachan*

DOI: 10.1002/aelm.202101198

1. Introduction

For specific tasks, in-memory and analog
computing[1,2] has promise to save energy
and time compared to conventional com-
puting based on general-purpose von-Neu-
mann architectures, due to significantly
reduced data movement.[3] Accelerators
based on nonvolatile memristive devices
can offer high data density and analog
operations, which can enable accelera-
tion of many important computing tasks
including neural network training and
inference,[4–9] image processing,[10,11] opti-
mization,[12–14] and algebraic problems.[15,16]
These are based predominantly on cross-
bars of memristive devices,[17] which can
directly map from a target matrix due
to the analog tunability of the program-
mable, nonvolatile resistive switches.[18]
Going beyond this, another in-memory
computing primitive is based on content
addressable memory (CAM),[19] which
operates in an opposite way as random
access memory. Here, data is given as
input and the location of a match to that
data is returned, offering cross-memory
lookup and pattern matching accelera-

tion[20–23] in just a few clock cycles. This connects to the bio-
logically-inspired concept of associative memories,[24–26] and the
powerful notion of associative computing.[27–32] Today, the phys-
ical implementations of CAMs and Ternary CAM (TCAM)—
which introduce a third wild card “x” state besides the usual
“0” and “1”—are typically based on SRAM circuits, but have
high area and cost.[33] Utilizing nonvolatile technology has been
explored to reduce power and area, including with memristive
devices[34–39] and ferroelectric technology.[40,41] Taking advantage
of the analog tunability and dynamic range in such devices an
analog (or multi-bit) CAM based on memristors[42] was intro-
duced. The concept is to store ranges in each CAM cell using
two memristors that define the boundaries, either in discrete
allowed intervals (multi-bit) or continuously tunable (analog).
Similarly, the inputs can take discrete values (multi-bit input)
or be continuous. This can offer higher data density and lower
energy per search,[42] but does become susceptible to variability
and fluctuations in memristive devices which continue to
mature. Additionally, unique operations such as inequality tests
can be conducted with an analog CAM. This has been described
and utilized to accelerate the decisions in tree-based machine
learning models, including random forests.[43] The above

Memristors, Flash, and related nonvolatile analog device technologies offer
in-memory computing structures operating in the analog domain, such
as accelerating linear matrix operations in array structures. These take
advantage of analog tunability and large dynamic range. At the other side,
content addressable memories (CAM) are fast digital lookup tables which
effectively perform nonlinear Boolean logic and return a digital match/
mismatch value. Recently, nonvolatile analog CAMs have been presented
merging analog storage and analog search operations with digital match/
mismatch output. However, CAM blocks cannot easily be inserted within
a larger adaptive system due to the challenges of training and learning
with binary outputs. Here, a missing link between analog crossbar arrays
and CAMs, namely a differentiable content addressable memory (dCAM),
is presented. Utilizing nonvolatile memories that act as a “soft” memory
with analog outputs, dCAM enables learning and fine-tuning of the memory
operation and performance. Four applications are quantitatively evaluated
to highlight the capabilities: improved data pattern storage, improved
robustness to noise and variability, reduced energy and latency performance,
and an application to solving Boolean satisfiability optimization problems.
The use of dCAM is envisioned as a core building block of fully differentiable
computing systems employing multiple types of analog compute operations
and memories.

G. Pedretti, C. E. Graves, T. Van Vaerenbergh, S. Serebryakov,
M. Foltin, X. Sheng
Hewlett Packard Labs
Milpitas, CA 95035, USA
E-mail: giacomo.pedretti@hpe.com; catherine.graves@hpe.com
R. Mao, C. Li
The University of Hong Kong
Hong Kong SAR, China
J. P. Strachan
Peter Grünberg Institute (PGI-14), Forschungszentrum Jülich GmbH
Jülich, Germany 52428
RWTH Aachen University
52062 Aachen, Germany
E-mail: j.strachan@fz-juelich.de

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aelm.202101198.

© 2022 The Authors. Advanced Electronic Materials published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

Adv. Electron. Mater. 2022, 2101198

http://crossmark.crossref.org/dialog/?doi=10.1002%2Faelm.202101198&domain=pdf&date_stamp=2022-03-02

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (2 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

applications, however, focused on digital outputs (match or mis-
match) from the CAM or analog CAM. Yet, in the CAM circuits,
the digital output signal consists of several analog comparisons
and operations within the CAM array. For example, a mismatch
corresponds to the capacitive charge in the matchline being dis-
charged by current flowing in the CAM cells. This means that
within CAMs, more quantitative information about the input/
output relationships is present but not used. In particular, by
measuring the analog, rather than discrete, output it is possible
to elucidate the continuous relationship between output and
the inputs or storage. Interestingly, this makes the analog CAM
output a scalar field, dependent on multiple parameters including
the input, stored values, and even parameters intrinsic to the cir-
cuit realization. Furthermore, the gradient of this scalar field can
be computed which enables optimization (e.g., gradient descent)
and learning techniques to be utilized. The present work studies
this novel concept of a differentiable CAM (dCAM), which is
shown to act as a soft memory and by sensing analog quantities
as outputs, new capabilities are developed. After describing the
operational concept we illustrate the new capabilities through sev-
eral applications, namely i) the capability to improve analog data
storage programming values for enhanced accuracy, ii) mitigation
of memristor device variability and fluctuations, iii) improved
energy and power by choosing circuit parameters, and iv) the
solution of k-SAT optimization problem by directly encoding
Boolean clauses and learning the optimal inputs (variable assign-
ment) to satisfy the clauses. These results illustrate the broad
range of applications for a memristive differentiable analog CAM,
which can be used as a trainable module capable of learning and
acting as a part of a larger neural-inspired architecture.

2. Memristor Integration and Programming

We developed the dCAM based on the previous analog CAM
using memristors.[42] Memristors are two terminals devices that
act as a nanoscale programmable resistance. Figure 1a shows
the side view of our BEOL fabricated memristor,[44,45] where a
TaOx layer is sandwiched between a metallic top electrode (TE)
and bottom electrode (BE). By applying a positive voltage on
the TE, a device that is initially in a pristine state undergoes a
set transition resulting in a low resistance. By controlling the
maximum current flowing during the set operation, this resist-
ance can be modulated. For reset, a negative voltage is applied
to the TE and by controlling the maximum voltage applied it

is possible to modulate the final high resistance state.[46] Con-
trolling the analog conductance by either set current or reset
voltage is not trivial due to stochastic processes present in
the resistance switching mechanisms. Figure 1b shows the
cumulative distribution of 16 equally spaced conductance states
programmed in 200 memristor devices, demonstrating both
clear levels and device-to-device variations in conductance.
Multiple techniques have been proposed to address analog vari-
ations,[47–51] such as using multiple devices for representing a
single entry and thus paying an area and energy consumption
overhead. These techniques are more complicated for non-con-
ventional memory circuits, such as CAMs[37,42] which require
more CMOS circuitry than crossbar arrays and also introduce
nonlinear components in the circuit’s input–output relation-
ship. Furthermore, following the programming, memristive
devices can show stochastic fluctuations (Figure 1c) particu-
larly in high resistance states. In CAMs, these fluctuations may
translate to errors in the CAM lookup operation over time (e.g.,
a CAM row producing a false match or false mismatch).

3. Differentiable CAM

Figure 2a shows the dCAM concept, consisting of a CAM cir-
cuit with analog input and analog storage similar to the analog
CAM[42] but with the additional feature of an analog output
on the match line (ML). In conventional CAM operation, the
ML is precharged and if the operation returns a match, the
ML stays charged, otherwise it discharges. The mismatch is
typically obtained due to a current flowing into the CAM cells
which discharges the capacitance on the ML. Figure 2b shows
an analog CAM circuit[42] (a layout in 16 nm CMOS is shown in
Figure S1, Supporting Information). The analog input voltage
aDL is applied to the gate of two different transistors, namely
T1 and T3. T1 is responsible for dividing the SL = SLhi − SLlo
voltage with the memristor M1. When the T1 conductance is
low compared to M1 (i.e., low aDL), the voltage at the middle
point between T1 and M1 will be high, and thus T2 will activate
and drain a large current IML, left from the match line aMLhi,
eventually discharging ML (a mismatch). When the T1 con-
ductance is large compared to M1 (i.e., high aDL), T2 will not
activate and this results in a match. Thus the left branch of
the circuit composed of T1, M1, and T2 verifies if the input is
larger than the stored value of the left boundary encoded by M1.
The right branch operation is similar, with the exception that

Figure 1.  a) Side-view of material stack for BEOL integrated TaOx memristors. The CMOS circuit is fabricated by an external Fab in the front end of the
line (FEOL) which the memristors are integrated in our clean room in the back end of the line (BEOL). b) Distribution of conductance for 16 equally
spaced levels programmed in 200 memristors each. c) Read noise of 200 conductance states as a function of read cycle.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (3 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

a CMOS inverter (T4–T5) is added between the voltage divider
(M2–T3) and pull-down transistor T6 which is responsible for
discharging the aMLhi. A high aDL activates T6, corresponding
to a mismatch operation, thus this right branch is responsible
for sensing if the input is smaller than the stored value of the
right boundary encoded by M2. Overall, an analog CAM cell cir-
cuit verifies if an input is within the range stored in the cell.

To operate as dCAM the circuit has been modified, adding
the capability to sense the discharge current on aMLlo, repre-
senting a distance metric of the input compared with the stored
data in the row. If the input is close to the stored values, a small
current is expected to flow in aMLlo and if the input is signifi-
cantly different from the stored values, the current increases
and discharges aMLhi quickly. During dCAM operation, the
aMLhi can be either kept at fixed value or precharged. In the
former case, the current is constant and depends on the voltage
on aDL and the stored conductance. In the latter case, the cur-
rent changes while the aMLhi discharges but to first approxima-
tion we assume constant while the T2 and T6 are in saturation
regime. Figure 2c shows a typical array organization of a CAM,
where an input is provided at the columns and the state of each
row ML would normally correspond to a bitwise AND operation
across the individual cells of that row with the input. The array
now includes the needed dCAM capabilities, including analog
inputs which are supplied in this case through digital to analog
converters (DAC) on the columns, and analog outputs which
can be sensed either on the aMLhi or aMLlo. Figure 2d illus-
trates the sensing circuits used for enabling dCAM operation,
namely an analog to digital converter (ADC) for sensing the
voltage on aMLhi and a transimpendence amplifier (TIA) to con-
vert the current flowing in aMLlo into a voltage sensed with an
analog to digital converter (ADC). In the dCAM training mode,
analog inputs are applied and by sensing the analog outputs
and computing the gradients it is possible to optimize many
parameters (such as storage values i.e., the memristor conduct-
ance, or inputs) for different tasks. After training, depending
on the application, the dCAM can be operated either by using
the analog output directly, or as an analog CAM converting the

voltage on aMLhi into a binary match/mismatch signal with
sense amplifier after a given clock time tCLK. Table 1 shows a
direct comparison of different types of CAM concepts.

4. Results and Discussion

4.1. Improved CAM Programming: Learn to Store
with a Multi-Bit dCAM

In conventional crossbars, choosing the desired conductance to
program the memristive devices for ideal matrix vector multipli-
cation operation[18] is straightforward as the operation is linear
(e.g., if a current I is desired when the input is V, the target
conductance should be G = I/V). This is not the case for analog
CAMs as the transfer function is inherently nonlinear as sev-
eral voltage/current transformations through transistors are
involved. By knowing the cell design, it is possible to estimate
the required memristor conductance to program into an analog
CAM cell to match a given range, that is, keep the ML charged
for at least one clock cycle tCLK and discharge it otherwise, as
described in Algorithm S1, Supporting Information and referred
here as the Naïve programming (NP) approach (circuit variable
description in Table S1, Supporting Information). The current
IML required for discharging aMLhigh in tCLK (mismatch), is first
computed and then reported as the required conductance of
M1 and M2. We used the NP approach for programming eight
levels (or Nbit = 3) into an analog CAM. Figure 3a shows the
simulated current IML as a function of input voltage VDL for
each analog CAM cell (different colors) as a result of program-
ming an equally spaced VDL target between 0.5 and 1.1V (inset)
in eight analog CAMs arranged in a column, an 8 × 1 array. A
tolerance of τ = 50mV was added, namely a CAM should match
if the input Vtarget − τ < VDL < Vtarget + τ. In this case, the single
input on the VDL is sensed separately by each cell and the cur-
rent IML of each aMLhi is minimized when the input corre-
sponds to the target. Note that the simulation disregards the
nonlinearity of the memristor conduction given its low impact

Figure 2.  a) dCAM concept, where analog input are searched and a similarity between input and the analog stored value is returned as output. b) Circuit
schematic of dCAM (inset shows the range encoding) and c) H×W array organization. d) Analog quantities, that is, VMLhi and IML are sensed by the
training circuits (ADC and TIA+ADC) and the operating circuit (sense amplifier only) used after training completes.

Table 1.  Comparison between CAM concepts.

Circuit Input Storage Output

TCAM [37] Digital (ternary) Digital (ternary) Digital

Analog CAM [42] Analog Analog Digital

Differentiable CAM [this work] Analog Analog Analog

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (4 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

in our devices.[42] While this programming algorithm is effec-
tive, it does not completely cancel the currents corresponding
to target inputs, in order to avoid superposition between levels,
and a small leakage is still present. For example when giving the
highest target, that is, VDL = 1.1, a leakage current of Ileak = 0.4 μA
is flowing from MLhi to MLlow. This can introduce errors when
considering the same target programmed in a 1 × 8 CAM array,
or row vector. Figure 3b shows IML as a function of VDL for the
same pattern of Figure 3a programmed in a row, instead of a
column. Each cell was tested by keeping all the other to a perfect
matched (i.e., target) input and sweeping the tested CAM input
voltage. As the figure shows, a large offset is present due to all
small currents contributions of each matched cell. To circum-
vent this problem, we developed a CAM-aware iterative program
and verify algorithm (IPV)[43] as described in Supplementary
Algorithm S3, Supporting Information. IPV starts by program-
ming the row with the NP (see Algorithm S2, Supporting Infor-
mation), then the row is tested with the target input and if it
results in a mismatch, NP is repeated again with more stringent
match/mismatch requirements. To do that, the sense amplifier
threshold voltage Vsense is slightly increased during the calcula-
tion of the required GM1 and GM2. The process is repeated until
convergence, that is, until a match is returned after testing with
the input target vector. Figure 3c shows the same pattern of (a)
and (b) programmed in an 1 × 8 array efficiently with IPV.

IPV is a solution for programming patterns efficiently in
analog CAM, however it is not resilient to device/circuit vari-
ations and noise since knowledge about such issues is not
included in the programming operation. Moreover, an optimal
δV is difficult to find to achieve a good balance between
number of iterations and convergence. For this reason, with
dCAM we developed a Learn to Store (L2S) procedure, which
exploits the analog in/analog storage/analog output capabilities
to learn the target vector to store in the memory circuit. Previ-
ously, we developed a compact analog CAM model[43] to quickly
assess the input/output relationship of large models without
performing SPICE circuit simulations. Here, we translated
the models to PyTorch[52] including the dCAM analog capabili-
ties, in order to enable auto-differentiation. L2S can be seen
as solving a classification problem, where the goal is to learn
how to output a match in a given dCAM row when applying
the input target vector. L2S can be performed either in software
simulations or in hardware, but in both case an accurate model
of the hardware is needed for computing the gradients.

As an initial test for L2S, we reproduce the results of pro-
gramming with the IPV algorithm, but emerging through
supervised training instead. We consider at this stage only ideal
devices (i.e., without noise and variability issues for memristors
and CMOS circuitry). In order to learn the target vector to store
of Figure 3c, we treat this as a classification problem, where
the goal is to program the desired pattern such that it correctly
accepts the set of correct input patterns, and rejects the set of
incorrect input patterns. Our study here is performed in simu-
lations where the output analog signals are computed with our
experimentally-grounded circuit model. In a hardware imple-
mentation of L2S, the row output would be directly measured
in the hardware shown in Figure 2c. For a given target vector,
a dataset for learning is created. The training dataset is gener-
ated by combining the input pattern (inset of Figure 4a) that
should be accepted (labeled as match), with the patterns to reject
(mismatch) that consist of 1 bit flips of neighboring inputs in
the multi-bit problem. The training dataset is augmented by
extracting 100 random analog input values that fall within each
pattern range (see Figure S2, Supporting Information). The
dCAM is initialized with the conductance obtained by program-
ming with NP. The dataset is then applied to the dCAM and con-
ductance learning is performed by optimizing the cross-entropy
loss of the SoftMax of IML,lo for each row in a CAM, where the
target ŷ represents the memory address, that is, row number for
where the target pattern will be within the CAM array. Figure 4a,
shows the loss as a function of learning epoch demonstrating
correct minimization. In fact the dCAM input/output relation-
ship after training in Figure 4b is comparable with the result
obtained with IPV in Figure 3c. Note this result is expected
since IPV is already iteratively adjusting the conductance based
on the circuit answer, which is a simplified version of what L2S
does in a more formal way. Figure 4c shows the final conduct-
ance obtained with L2S as a function of the initial conductance
(i.e., obtained with NP), where GM1 are reduced to avoid leakage
currents and hence false mismatches. The shift has a nonlinear
dependence on the conductance state, as shown in the figure.
While the resulting behavior is intuitive and matches our intel-
ligent IPV algorithm, it is notable that it was not explicitly pro-
grammed here, but emerged from the learning procedure.

The effectiveness of L2S is further quantified by using it in
a CAM based acceleration task. We recently developed a tree
based ML inference accelerator that utilizes the novel ine-
quality testing possible in an analog CAM.[43] Each root to leaf

Figure 3.  a) Programming equally spaced VDL pattern (inset) in an 8 × 1 analog CAM array with Naïve programming (NP). Each line represents the
input–output relationship for different cells in the 8 × 1 array, where color is the target voltage programmed in it. b) Same pattern programmed with
NP in a 1 × 8 array showing an undesired current offset. c) Same pattern correctly programmed in a 1 × 8 array with CAM aware iterative program and
verify (IPV) which significantly reduces the current.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (5 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

path (branch) of a decision tree (DT) is mapped to an analog
CAM array row, as shown in Figure S3, Supporting Informa-
tion, and thus allows single-step tree inference. The accuracy
of the inference operations is critically dependent in faithfully
programming the stored CAM words that encode these DT
inequality values. We assessed the capabilities of L2S in dCAM
for this application, using the cross-entropy loss of the SoftMax
of the voltage VML, hi after a clock cycle tCLK. This corresponds to
a training of the dCAM to efficiently perform DT inference (see
Figure S4a, Supporting Information). Note that this is a dif-
ferent operation compared to the above multi-bit storage appli-
cation, since during inference the sense amplifier is used. First,
we trained a DT model for classification of the Iris Dataset[53]
with conventional tools (i.e., Python Sk-Learn) offline. After we
extracted the trained DT thresholds, we utilize dCAM to learn
how to store them in the optimal way with L2S. Supplementary
Figure 4b shows the loss as a function of the training epochs
demonstrating correctly minimization. Finally, we compared
L2S with other non-gradient based algorithms as shown in
Figure 4d. The accuracy in DT inference for the three algo-
rithms, namely NP, IPV, and L2S is plotted, demonstrating that
only L2S performs inference with equivalent software accuracy
(dashed line). Note that this result was obtained with ideal com-
ponents, thus noise-less memristor and defect/parasitic free
CMOS circuitry. By inserting in the compact model knowledge
about the variability, noise and parasitics present in the circuit
we next show it is possible to compensate for such issues.

4.2. Memristor Variability Compensation

Memristor devices can be programmed to multiple levels or
conductance states. However, as the programming operation
contains stochastic processes,[18] the programmed conductance
shows variability, as previously seen in Figure 1. By embedding
a stochastic conductance with a constant standard deviation
σNR for each level in the dCAM during training, it is possible to
program the conductance in an optimal way regardless of vari-
ation. Note that this procedure is similar to the in situ training
operation for conventional crosspoint arrays.[8] Figure 5a shows
the error during inference ε = ASW − AHW, with ASW ideal soft-
ware accuracy and AHW the inference accuracy after deploying

the model on analog CAM or dCAM, as a function of the pro-
gramming variation σNR. The calculation was repeated for the
three programming strategies of NP and IPV for analog CAM
and L2S for dCAM. While analog CAM error increases even
for small σNR, dCAM is able to compensate the noise up to
≈10% without loss in accuracy due to the use of a training algo-
rithm. Memristors are also subject to read noise, meaning that
the conductance also varies through time.[18] We considered
random conductance fluctuations in time with a normal distri-
bution across the programmed value and similarly assessed the
resulting error during inference for the different programming
approaches. Figure 5b shows the ε as a function of the read
noise standard deviation σNR demonstrating that dCAM main-
tains an almost constant accuracy even for large σNR.

4.3. dCAM for Optimizing Circuit Performance

4.3.1. Reducing Power by CMOS Sub-Threshold Current Variability
Compensation

An analog CAM can have large static power consumption due
to current flowing from SLhi to SLlo in the voltage divider opera-
tion.[43] Lower power analog CAM operations are possible by
operating the input transistors T1 and T3 in the subthreshold
regime, limiting static current and thus static power. Another
benefit to this operational regime is that the smaller VDL cor-
responds to adopting smaller conductance as stored thresholds,
which is also beneficial for total search power. Unfortunately,
subthreshold conduction of transistors suffers from large
variability due to the exponential dependence of the transistor
threshold voltage VTH which is subject to process variation.[54]
Figure 5c shows the probability distribution of the subthreshold
transistor current error, namely ΔImem = Isub/Isub, ideal where
Isub is the current affected by process variation and Isub, ideal
the nominal one, for a threshold variation / 10THTH VVσ = %,[54]
where a large variation is evident. By inserting information
about the process defect in the dCAM model, we tested the
ability to learn high inference accuracy while simultaneously
reducing the minimum voltage Vmin applied to VDL to mini-
mize power. Figure 5d shows the inference error ε as a func-
tion of Vmin demonstrating that the learning procedure in

Figure 4.  a) Training Loss during learning as a function of epochs. The loss corresponds to the cross-entropy of IML SoftMax S function (see inset
equation).The dataset was created by inserting dummy rows for each 1-bit mismatch. b) Pattern of Figure 3 learned by the dCAM with L2S replicating
the same result of IPV. c) Final conductance after L2S as a function of initial conductance, namely the conductance obtained with NP. d) DT inference
accuracy comparison for three programming strategies with digital software accuracy in dashed line.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (6 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

the dCAM is robust to process variation while analog CAM
implementation both with NP and IPV strategies are strongly
affected. The result is that the dCAM enables lower power con-
sumption for CAM applications. By considering an inference
iso-accuracy with analog CAM, Figure 5e shows the energy per
node per decision[37,43] which is reduced by a factor 3× with L2S
and dCAM compared with IPV and analog CAM.

4.3.2. Higher Throughput and Lower Energy by Parasitic
Capacitance Compensation

Finally, we test dCAM in compensating the parasitic capaci-
tance which is formed on the MLhi for each cell that is added
in a row. The overall capacitance can be computed as CML =
CPC + Csense + WCCAM where CPC is the output capacitance
of the precharge circuit, Csense is the input capacitance of the
sense amplifier circuit, W is the total number of CAM cells in
a row and CCAM the parasitic capacitance which correspond to
the drain–source capacitance of transistor T2 and T6 connected
to the aMLhi.[43] Note that during NP/IPV the parasitic capaci-
tance is considered, but without the collective behavior of dis-
charge currents. By embodying this information in the dCAM
model, it is possible to learn efficiently the proper conductance
to program in order to maximize the clock speed as shown in
Figure 5f. Smaller clocks corresponds to larger throughput,
namely the number of decision per second that can be inferred
by the CAM. Figure 5g shows the throughput for analog CAM
with IPV and dCAM with L2S which is 2× larger for the latter.
Note that after L2S dCAM is operated as an analog CAM thus
does not require analog to digital conversion of the output, thus
the high throughput. As a result, by storing a model with L2S

optimizing both for process variation and parasitic mitigation
it is possible to reduce the energy consumption of the SL by a
factor 6× as shown in the plot of Figure 5h. This is due to the
joint effects of static power minimization by using subthreshold
input transistors and parasitic capacitance compensation.

4.4. Solving k-SAT Optimization Problems

The dCAM enables entirely new functionality not typically
tackled with CAM circuits. In particular, we studied the appli-
cation to Boolean satisfiability (k-SAT), a class of NP-complete
problems,[55] to which many other optimization problems can
be mapped.[56] An example of a k-SAT (with k = 3) problem is
finding the binary variable assignments that return as output
“1” of a given conjunctive normal form of equations. As an
example, given the Boolean expression

x y z x y z() ()∨ ¬ ∨ ∧ ¬ ∨ ¬ ∨ ¬ 	 (1)

the variable assignment [1,0,0] to the inputs satisfies the expres-
sion. Interestingly, OR-type CAMs can act as k-SAT filter, namely
they can be used to verify if an input set of variables satisfies the
Boolean expression.[57] We extended this concept to the dCAM in
order to learn the proper set of inputs which solves the encoded
problem. Figure 6a shows the needed modifications to the CAM
cell to perform a three-way OR operation. Each CAM cell returns
a match if at least one of the three input literals is within the
range encoded by the memristors. Given the clauses of Equa-
tion (1), they can be mapped as “1” or “0” in the 3-way OR type
CAM. If a literal is negated a “1” should be programmed, that
is, the lower branch memristor should be programmed to a

Figure 5.  Efficient inference of DT model with analog CAM. a) Inference error ε = ASW − AHW with ASW software baseline and AHW hardware accuracy, as
a function of programming variability standard deviation for the three programming strategies. b) Inference error ε as a function of read noise standard
deviation for the three strategies. c) Distribution of subthreshold transistor current error for a 10% standard deviation of the error on the threshold.
d) Inference ε as a function of minimum applied VDL for the three programming strategies. e) Iso-accuracy SL static power consumption per node for
IPV and L2S. The latter can operate at lower Vmin. f) Inference error ε as a function of clock time tCLK for sensing MLhi. g) Resulting throughput for the
different programming strategies. h) Total resulting energy consumption on the SL path.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (7 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

reasonable middle state, for example, G = 50 μS and the upper
branch memristor to the state corresponding to a do not care, or
always match, which in this case is a low conductance state. The
opposite mapping would apply to a literal which is not negated,
thus the lower branch memristor should be programmed to a
high conductance state and the upper branch memristor to a
reasonable middle state. If the proper set of input, for example,
[1,0,0], is applied to the transistors connected to the MLhi (per-
forming the OR operation) remain off, otherwise they turn on
and the current IML is a measure of how distant the candidate
input is from the correct solution. This analog information can
be differentiated and gradient-based searching or annealing algo-
rithms used to find the optimum set of inputs that minimizes the
output. Note that while memristor values do not change during
the solution of k-SAT, it is required to use them instead of simple
resistors in order to program different Boolean expressions when
encoding a new problem into the hardware. Figure 6b shows a
circuit for solving k-SAT problems with the OR-type dCAM con-
cept. Given a problem with N variables, C clauses and k literals
a k-way OR type dCAM should be used. The inputs are applied
with an N channels DAC and the resulting output current IML is
read with a TIA and ADC chain and fed into an optimizer.

4.4.1. Comparison with Ising Solvers

We tested the dCAM with 100 three-SAT problems taken from
the SATLIB-uf20.91 dataset,[58] consisting of instances with
N = 20 variable and C = 91 clauses, which is considered to be

in the spectrum of hard problems because the ratio of clauses
to variables C/N ≈ 4.5.[59] We compared dCAM with the popular
Ising approach, which maps 3-SAT problems to an Ising Ham-
iltonian by first mapping it to a maximum independent set
(MIS) problem, and finds the ground states.[60] As a hardware
approach for comparison, we considered a memristive Hopfield
neural network[12] which can encode Ising problems and solve
at high throughput. But even this highly efficient memristor
solver requires a total of (kC)2 memristors, resulting in poor
scaling. Interestingly, the dCAM solver only needs 2kC memris-
tors, scaling linearly with the problem size. Figure 7a shows the
dCAM error ε = IML/IML, max, with IML, max the saturation current
of the transistors as a function of update cycles. Noise is added
externally to the solver and different stochastic approaches
such as simulated annealing and/or basin hopping can be per-
formed. This can be done either by software tools or directly in
hardware.[12,14] Figure 7b shows the Ising energy for the same
problems as a function of the update cycles, which requires a
larger number of cycles to converge. Figure 7c shows the prob-
ability to solve a problem as a function of the update cycle for
dCAM (dCAMsingle) and an Ising model (Isingsingle) demon-
strating the better performance of dCAM up to 1.5×. dCAM
was also tested with all the problems to compute the average
probability of solving a problem (dCAMmulti in Figure 7c) which
is in good agreement with the problem chosen. Figure 7d
shows the time to solution (TTS),[12] namely the time required
to have a 99% probability of finding the right solution for the
two implementation, including an average over 100 problems
for dCAM accelerator. The results show that dCAM has a

Figure 6.  a) Three-way OR-type dCAM which results in a “Match” if any of the three DL inputs satisfies the memristor-encoded logical expression
b) k-SAT solution with dCAM. Given a problem with N variables, C clauses and k literals this can be encoded in C k-way analog CAM cells whose
output is differentiated and given to an N-channel DAC driving the aDL. The programmed conductances encode the problem, while the correct input
is learned. Noise is added to escape local minima (i.e., IML > 0 for multiple iterations) in the solution space. Different techniques such as simulated
annealing or basin hopping can be applied. When IML ≈ 0 the problem is solved.

Figure 7.  Example runs showing error ε for a) dCAM optimizer and b) Ising energy for an Ising solver as a function of updates for two different problem
initializations. Comparison of probability to correctly solve a c) three-SAT problem and best time to solution in number of updates (left axis) and
d) milliseconds (right axis) for a 99% probability of success for dCAM optimizer (dCAMsingle) and Ising solver (Isingsingle). dCAM optimizer was
also tested (dCAMmulti) with 100 different three-SAT problems to show the average behavior.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (8 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

significant advantage of 2× faster compared with Ising solver,
in addition to reduced requirements and better scaling in the
number of memristive elements. It is thus anticipated that the
performance improvement would be even more striking for
larger problem sizes. Interestingly, our result is close to run-
ning miniSAT algorithm, among the top SAT solvers, in an
FPGA[61], which takes ≈0.8 ms and consuming ≈3 W. Based on
previous results[42,43] we expect our solver to have a peak power
consumption of ≈5mW, suggesting at least two orders of mag-
nitude lower energy to solution. With this promising perfor-
mance indication, future studies will be needed to expand this
comparison to include more problem classes, variable sizes,
benchmark instances, and hardware approaches.

5. Conclusion

Here we demonstrated the novel concept of a differentiable
analog nonvolatile CAM. This new concept enables the ability
to learn what patterns to store to improve overall accuracy,
depending on the desired application. This was demonstrated
in the programming approach for tree based ML acceleration
in CAMs to compensate for device and circuit nonidealities.
Beyond setting the patterns to store and improving robustness
to variability, gradients of the output can be taken with respect
to circuit parameters in order to yield performance improve-
ments such as lower power, energy, or increased throughput.
Finally, the concept was extended to solving optimization
problems, where the constraints are mapped in the CAM and
the dCAM learns the optimal set of inputs to satisfy Boolean
expressions. We envision the use of dCAM as a core building
block of fully differentiable computing system employing
multiple types of analog compute operations and memories,
and thus broadening the set of application even further than
those shown here.

6. Experimental Section
CMOS and Memristor Integration Process: The memristors were

monolithically integrated on CMOS fabricated in a 180 nm technology
node. The integration starts with a removal of silicon nitride and oxide
passivation with reactive ion etching and a buffered oxide etch dip.
Chromium and platinum bottom electrodes were then patterned with
e-beam lithography and metal lift-off process, followed by reactive
sputtered 4.5 nm tantalum oxide as switching layer, with 10% of
oxygen in a Ar:O2 mixture. The BE metal was thus Cr/Pt, with Cr as an
adhesion layer. The device stack was finalized by e-beam lithography
patterning of sputtered tantalum and platinum metal as top electrodes.
The TE was then Ta/Pt/Cr, with Pt a protection for oxidation of Ta and
Cr as a etch mask to etch Pt and Ta. The effective electrodes for the
memristors (making direct contact with TaOx) were Pt for BE and Ta
for TE. More information about the fabrication process and memristor
characterization can be found in refs. [44,45].

Memristor Characterization: Memristor devices were characterized in
a fully integrated system consisting in three 64 × 64 arrays of memristors
in 1-transistor-1-memristor configuration, routing, and sensing
circuits.[45] The system was taped out in 180 nm CMOS technology and
memristors integrated in Hewlett Packard Labs clean room facilities.
Program and verify algorithm were used for programming the desired
conductance by an increasing either the gate or top electrode voltage
during programming. First, a read operation was performed to each

device. If a memristor conductance Gij was bigger than its target Gtarget,ij,
namely Gij > Gtarget, ij + gtol,in where gtol,in is the internal tolerance, a reset
operation was performed by increasing at each step the BE voltage
from 0.5 to 1.5 V with steps of 0.1 V and increasing the gate voltage
from 0.5 to 3 V. In contrast, if Gij < Gtarget,ij − gtol,in a set operation is
performed by increasing at each step the TE voltage from 0.5 to 2 V
with steps of 0.1 V and increasing the gate voltage from 0.5 to 1.5 V.
The programming operation was repeated until convergence, namely
until |Gij − Gtarget, ij| < gtol,in. While programming a given memristor, it
was possible that another memristor in another location changes its
conductance even if its programming operation already converged,
due to both device and circuit nonidealities. For this reason, if
|Gij − Gtarget,ij| > gtol,out, where gtol,out > gtol,in is the external tolerance, the
programming operation is repeated. More details about the program
and verify algorithm can be found in ref. [62].

dCAM Modeling: dCAM was modeled in PyTorch environment
as a module which includes the current–voltage transfer function
of transistor. Memristor read and program noise was modeled as a
Gaussian distribution with constant σG/G. For read noise, the samples
were taken from the distribution at each iteration while for programming
variation samples were taken only when the memristor conductance
was updated. Process variations were modeled as VT initialization by
sampling before training from a Gaussian distribution. Fitting values for
the model and parasitic were extracted from the taped-out chip at 180 nm
technology[42] and post layout simulation at 16 nm technology.[42,43]

Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data and code that support the findings of this study are available
from the corresponding author upon reasonable request.

Keywords
analog computing, content addressable memories, in-memory
computing, memristor

Received: November 5, 2021
Revised: January 17, 2022

Published online:

[1]	 D. Ielmini, H.-S. P. Wong, Nat. Electron. 2018, 1, 333.
[2]	 J. Hasler, in 2016 IEEE Int. Conf. on Rebooting Computing (ICRC),

IEEE, Piscataway, NJ 2016, pp. 1–8.
[3]	 M. A. Zidan, J. P. Strachan, W. D. Lu, Nat. Electron. 2018, 1, 22.
[4]	 G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat,

R. S. Shenoy, P. Narayanan, K. Virwani, E. U. Giacometti,
B. N. Kurdi, H. Hwang, IEEE Trans. Electron Devices 2015, 62, 3498.

[5]	 A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, V. Srikumar, in 2016 ACM/
IEEE 43rd Annual Int. Symp. on Computer Architecture (ISCA), IEEE,
Piscataway, NJ 2016, pp. 14–26.

Adv. Electron. Mater. 2022, 2101198

www.advancedsciencenews.com
www.advelectronicmat.de

2101198  (9 of 9) © 2022 The Authors. Advanced Electronic Materials published by Wiley-VCH GmbH

[6]	 S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter,
J. A. Cox, C. D. James, M. J. Marinella, International Joint Conference
on Neural Networks 2016, 10.

[7]	 S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.

[8]	 C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery,
P. Lin, Z. Wang, W. Song, J. P. Strachan, M. Barnell, Q. Wu,
R. S. Williams, J. J. Yang, Q. Xia, Nat. Commun. 2018, 9, 2385.

[9]	 V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar,
C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, E. Eleftheriou,
Nat. Commun. 2020, 11, 2473.

[10]	 P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W. D. Lu,
Nat. Nanotechnol. 2017, 12, 784.

[11]	 C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang,
W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin,
Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, Q. Xia, Nat.
Electron. 2018, 1, 52.

[12]	 F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li,
Z. Liu, M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil, W. D. Lu,
J. P. Strachan, Nat. Electron. 2020, 3, 409.

[13]	 G. Pedretti, P. Mannocci, S. Hashemkhani, V. Milo, O. Melnic,
E. Chicca, D. Ielmini, IEEE J. Explor. Solid-State Comput. Devices
Circuits 2020, 6, 89.

[14]	 M. R. Mahmoodi, M. Prezioso, D. B. Strukov, Nat. Commun. 2019,
10, 5113.

[15]	 M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner,
W. D. Lu, Nat. Electron. 2018, 1, 411.

[16]	 Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, D. Ielmini,
Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 4123.

[17]	 J. J. Yang, D. B. Strukov, D. R. Stewart, Nat. Nanotechnol. 2013, 8, 13.
[18]	 D. Ielmini, G. Pedretti, Adv. Intell. Syst. 2020, 2, 2000040.
[19]	 K. Pagiamtzis, A. Sheikholeslami, IEEE J. Solid-State Circuits 2006,

41, 712.
[20]	 C. R. Meiners, J. Patel, E. Norige, E. Torng, A. X. Liu, in Proc. of the

19th USENIX Conf. on Security, IEEE, Piscataway, NJ 2010, pp. 1–16.
[21]	 K. Peng, S. Tang, M. Chen, Q. Dong, in 2011 ACM/IEEE Seventh

Symp. on Architectures for Networking and Communications Systems,
IEEE, Piscataway, NJ 2011, pp. 24–35.

[22]	 F. Yu, R. Katz, T. Lakshman, in Proc. of the 12th IEEE Int. Conf. on
Network Protocols, IEEE, Piscataway, NJ 2004, pp. 174–183.

[23]	 K. Huang, L. Ding, G. Xie, D. Zhang, A. Liu, S. Kavé, in Architectures
for Networking and Communications Systems, IEEE, Piscataway, NJ
2013, pp. 83–93.

[24]	 D. J. Willshaw, O. P. Buneman, H. C. Longuet-Higgins, Nature 1969,
222, 960.

[25]	 T. Kohonen, IEEE Trans. Comput. 1972, C-21, 353.
[26]	 J. J. Hopfield, Proc. Natl. Acad. Sci. USA 1982, 79, 8 2554.
[27]	 Q. Guo, X. Guo, R. Patel, E. Ipek, E. G. Friedman, in Proc. of the

40th Annu. Int. Symp. on Computer Architecture, ISCA ’13, Associa-
tion for Computing Machinery, New York, NY.

[28]	 M. Sharad, D. Fan, K. Roy, in Proc. of the 50th Annual Design Auto-
mation Conf, Association for Computing Machinery, New York, NY
2013, pp. 1–6.

[29]	 M. Imani, A. Rahimi, D. Kong, T. Rosing, J. M. Rabaey, in 2017 IEEE
Int. Symp. on High Performance Computer Architecture (HPCA),
IEEE, Piscataway, NJ 2017, pp. 445–456.

[30]	 A. Ranjan, S. Jain, J. R. Stevens, D. Das, B. Kaul, A. Raghunathan,
in Proc. of the 56th Annual Design Automation Conf. 2019, DAC '19,
Association for Computing Machinery, New York, NY 2019.

[31]	 Y. Zha, J. Li, in 2020 ACM/IEEE 47th Annual Int. Symp. on Computer
Architecture (ISCA), IEEE, Piscataway, NJ 2020, pp. 846–859.

[32]	 D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent,
B. A. Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij,
A. Rahimi, F. T. Sommer, arXiv:2106.05268 2021.

[33]	 C. Xu, S. Chen, J. Su, S. M. Yiu, L. C. K. Hui, IEEE Commun. Surv.
Tutorials 2016, 18, 2991.

[34]	 M.-F. Chang, C.-C. Lin, A. Lee, Y.-N. Chiang, C.-C. Kuo, G.-H. Yang,
H.-J. Tsai, T.-F. Chen, S.-S. Sheu, IEEE J. Solid-State Circuits 2017, 52, 1664.

[35]	 A. Grossi, E. Vianello, C. Zambelli, P. Royer, J.-P. Noel, B. Giraud,
L. Perniola, P. Olivo, E. Nowak, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2018, 26, 2599.

[36]	 C. E. Graves, S.-T. Lam, X. Li, L. Kiyama, M. Foltin, M. P. Hardy,
J. P. Strachan, C. Li, X. Sheng, W. Ma, S. R. Chalamalasetti,
D. Miller, J. S. Ignowski, B. Buchanan, L. Zheng, IEEE Trans. Nano-
technol. 2019, 18, 963.

[37]	 C. E. Graves, C. Li, X. Sheng, D. Miller, J. Ignowski, L. Kiyama,
J. P. Strachan, Adv. Mater. 2020, 32, 2003437.

[38]	 H. Li, W.-C. Chen, A. Levy, C.-H. Wang, H. Wang, P.-H. Chen,
W. Wan, W.-S. Khwa, H. Chuang, Y.-D. Chih, M.-F. Chang,
H.-S. P. Wong, P. Raina, IEEE Trans. Electron Devices 2021, 68, 6637.

[39]	 X. Wang, L. Wang, Y. Wang, J. An, C. Dou, Z. Wu, X. Zhang, J. Liu,
C. Zhang, Z. Yao, Z. Yu, T. Shi, C. Chen, X. Jiang, M.-F. Chang,
Q. Liu, IEEE Trans. Electron Devices 2021, 68, 5.

[40]	 K. Ni, X. Yin, A. F. Laguna, S. Joshi, S. Dünkel, M. Trentzsch, J. Müller,
S. Beyer, M. Niemier, X. S. Hu, S. Datta, Nat. Electron. 2019, 2, 521.

[41]	 C. Li, F. Muller, T. Ali, R. Olivo, M. Imani, S. Deng, C. Zhuo,
T. Kampfe, X. Yin, K. Ni, in 2020 IEEE Int. Electron Devices Meeting
(IEDM). IEEE, Piscataway, NJ 2020, pp. 29.3.1–29.3.4.

[42]	 C. Li, C. E. Graves, X. Sheng, D. Miller, M. Foltin, G. Pedretti,
J. P. Strachan, Nat. Commun. 2020, 11, 1638.

[43]	 G. Pedretti, C. E. Graves, S. Serebryakov, R. Mao, X. Sheng,
M. Foltin, C. Li, J. P. Strachan, Nat. Commun. 2021, 12, 5806.

[44]	 X. Sheng, C. E. Graves, S. Kumar, X. Li, B. Buchanan, L. Zheng,
S. Lam, C. Li, J. P. Strachan, Adv. Electron. Mater. 2019, 5, 1800876.

[45]	 C. Li, J. Ignowski, X. Sheng, R. Wessel, B. Jaffe, J. Ingemi, C. Graves,
J. P. Strachan, in 2020 IEEE Int. Memory Workshop (IMW). IEEE,
Piscataway, NJ 2020, pp. 1–4.

[46]	 G. Pedretti, D. Ielmini, Electronics 2021, 10, 9.
[47]	 A. Bandyopadhyay, G. J. Serrano, P. Hasler, in 2005 IEEE Int. Symp.

on Circuits and Systems, IEEE, Piscataway, NJ 2005, pp. 2148–2151.
[48]	 F. Alibart, L. Gao, B. D. Hoskins, D. B. Strukov 2012, 23, 7 075201
[49]	 I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell,

T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, E. Eleftheriou,
Nat. Commun. 2018, 9, 2514.

[50]	 G. Pedretti, E. Ambrosi, D. Ielmini, in 2021 IEEE Int. Reliability
Physics Symp. (IRPS), IEEE, Piscataway, NJ 2021, pp. 1–8.

[51]	 G. Pedretti, P. Mannocci, C. Li, Z. Sun, J. P. Strachan, D. Ielmini,
IEEE Trans. Electron Devices 2021, 68, 4373.

[52]	 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, in Advances in Neural Information
Processing Systems, (Eds: H. Wallach, H. Larochelle, A. Beygelzimer,
F. d. Alché-Buc, E. Fox, R. Garnett) Vol. 32, Curran Associates,
Red Hook, NY 2019.

[53]	 R. A. Fisher, Ann. Eugenics 1936, 7, 179.
[54]	 Y. Ye, S. Gummalla, C.-C. Wang, C. Chakrabarti, Y. Cao, J. Comput.

Electron. 2010, 9, 108.
[55]	 R. Impagliazzo, R. Paturi, J. Comput. Syst. Sci. 2001, 62, 367.
[56]	 L. Fortnow, Commun. ACM 2009, 52, 78.
[57]	 J. P. Strachan, C. E. Graves, K-SAT filter querying using ternary

content-addressable memory, 2020.
[58]	 H. H. Hoos, T. Stützle, in Frontiers in Artificial Intelligence and

Applications, IOS Press, Amsterdam 2000, pp. 283–292.
[59]	 B. Selman, D. G. Mitchell, H. J. Levesque, Artif. Intell. 1996, 81, 17.
[60]	 A. Lucas, Front. Phys. 2014, 2, 5.
[61]	 T.-H. Chen, J.-Y. Lu, arXiv:1603.05314 2016.
[62]	 G. Pedretti, P. Mannocci, C. Li, Z. Sun, J. P. Strachan, D. Ielmini,

IEEE Trans. Electron Devices 2021, pp. 1–6.

Adv. Electron. Mater. 2022, 2101198

