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1. Introduction

For specific tasks, in-memory and analog 
computing[1,2] has promise to save energy 
and time compared to conventional com-
puting based on general-purpose von-Neu-
mann architectures, due to significantly 
reduced data movement.[3] Accelerators 
based on nonvolatile memristive devices 
can offer high data density and analog 
operations, which can enable accelera-
tion of many important computing tasks 
including neural network training and 
inference,[4–9] image processing,[10,11] opti-
mization,[12–14] and algebraic problems.[15,16] 
These are based predominantly on cross-
bars of memristive devices,[17] which can 
directly map from a target matrix due 
to the analog tunability of the program-
mable, nonvolatile resistive switches.[18] 
Going beyond this, another in-memory 
computing primitive is based on content 
addressable memory (CAM),[19] which 
operates in an opposite way as random 
access memory. Here, data is given as 
input and the location of a match to that 
data is returned, offering cross-memory 
lookup and pattern matching accelera-

tion[20–23] in just a few clock cycles. This connects to the bio-
logically-inspired concept of associative memories,[24–26] and the 
powerful notion of associative computing.[27–32] Today, the phys-
ical implementations of CAMs and Ternary CAM (TCAM)—
which introduce a third wild card “x” state besides the usual 
“0” and “1”—are typically based on SRAM circuits, but have 
high area and cost.[33] Utilizing nonvolatile technology has been 
explored to reduce power and area, including with memristive 
devices[34–39] and ferroelectric technology.[40,41] Taking advantage 
of the analog tunability and dynamic range in such devices an 
analog (or multi-bit) CAM based on memristors[42] was intro-
duced. The concept is to store ranges in each CAM cell using 
two memristors that define the boundaries, either in discrete 
allowed intervals (multi-bit) or continuously tunable (analog). 
Similarly, the inputs can take discrete values (multi-bit input) 
or be continuous. This can offer higher data density and lower 
energy per search,[42] but does become susceptible to variability 
and fluctuations in memristive devices which continue to 
mature. Additionally, unique operations such as inequality tests 
can be conducted with an analog CAM. This has been described 
and utilized to accelerate the decisions in tree-based machine 
learning models, including random forests.[43] The above  
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applications, however, focused on digital outputs (match or mis-
match) from the CAM or analog CAM. Yet, in the CAM circuits, 
the digital output signal consists of several analog comparisons 
and operations within the CAM array. For example, a mismatch 
corresponds to the capacitive charge in the matchline being dis-
charged by current flowing in the CAM cells. This means that 
within CAMs, more quantitative information about the input/
output relationships is present but not used. In particular, by 
measuring the analog, rather than discrete, output it is possible 
to elucidate the continuous relationship between output and 
the inputs or storage. Interestingly, this makes the analog CAM 
output a scalar field, dependent on multiple parameters including 
the input, stored values, and even parameters intrinsic to the cir-
cuit realization. Furthermore, the gradient of this scalar field can 
be computed which enables optimization (e.g., gradient descent) 
and learning techniques to be utilized. The present work studies 
this novel concept of a differentiable CAM (dCAM), which is 
shown to act as a soft memory and by sensing analog quantities 
as outputs, new capabilities are developed. After describing the 
operational concept we illustrate the new capabilities through sev-
eral applications, namely i) the capability to improve analog data 
storage programming values for enhanced accuracy, ii) mitigation 
of memristor device variability and fluctuations, iii) improved 
energy and power by choosing circuit parameters, and iv) the 
solution of k-SAT optimization problem by directly encoding 
Boolean clauses and learning the optimal inputs (variable assign-
ment) to satisfy the clauses. These results illustrate the broad 
range of applications for a memristive differentiable analog CAM, 
which can be used as a trainable module capable of learning and 
acting as a part of a larger neural-inspired architecture.

2. Memristor Integration and Programming

We developed the dCAM based on the previous analog CAM 
using memristors.[42] Memristors are two terminals devices that 
act as a nanoscale programmable resistance. Figure  1a shows 
the side view of our BEOL fabricated memristor,[44,45] where a 
TaOx layer is sandwiched between a metallic top electrode (TE) 
and bottom electrode (BE). By applying a positive voltage on 
the TE, a device that is initially in a pristine state undergoes a 
set transition resulting in a low resistance. By controlling the 
maximum current flowing during the set operation, this resist-
ance can be modulated. For reset, a negative voltage is applied 
to the TE and by controlling the maximum voltage applied it 

is possible to modulate the final high resistance state.[46] Con-
trolling the analog conductance by either set current or reset 
voltage is not trivial due to stochastic processes present in 
the resistance switching mechanisms. Figure  1b shows the 
cumulative distribution of 16 equally spaced conductance states 
programmed in 200 memristor devices, demonstrating both 
clear levels and device-to-device variations in conductance. 
Multiple techniques have been proposed to address analog vari-
ations,[47–51] such as using multiple devices for representing a 
single entry and thus paying an area and energy consumption 
overhead. These techniques are more complicated for non-con-
ventional memory circuits, such as CAMs[37,42] which require 
more CMOS circuitry than crossbar arrays and also introduce 
nonlinear components in the circuit’s input–output relation-
ship. Furthermore, following the programming, memristive 
devices can show stochastic fluctuations (Figure  1c) particu-
larly in high resistance states. In CAMs, these fluctuations may 
translate to errors in the CAM lookup operation over time (e.g., 
a CAM row producing a false match or false mismatch).

3. Differentiable CAM

Figure 2a shows the dCAM concept, consisting of a CAM cir-
cuit with analog input and analog storage similar to the analog 
CAM[42] but with the additional feature of an analog output 
on the match line (ML). In conventional CAM operation, the 
ML is precharged and if the operation returns a match, the 
ML stays charged, otherwise it discharges. The mismatch is 
typically obtained due to a current flowing into the CAM cells 
which discharges the capacitance on the ML. Figure 2b shows 
an analog CAM circuit[42] (a layout in 16 nm CMOS is shown in 
Figure  S1, Supporting Information). The analog input voltage 
aDL is applied to the gate of two different transistors, namely 
T1 and T3. T1 is responsible for dividing the SL = SLhi − SLlo 
voltage with the memristor M1. When the T1 conductance is 
low compared to M1 (i.e., low aDL), the voltage at the middle 
point between T1 and M1 will be high, and thus T2 will activate 
and drain a large current IML, left from the match line aMLhi, 
eventually discharging ML (a mismatch). When the T1 con-
ductance is large compared to M1 (i.e., high aDL), T2 will not 
activate and this results in a match. Thus the left branch of 
the circuit composed of T1, M1, and T2 verifies if the input is 
larger than the stored value of the left boundary encoded by M1. 
The right branch operation is similar, with the exception that 

Figure 1.  a) Side-view of material stack for BEOL integrated TaOx memristors. The CMOS circuit is fabricated by an external Fab in the front end of the 
line (FEOL) which the memristors are integrated in our clean room in the back end of the line (BEOL). b) Distribution of conductance for 16 equally 
spaced levels programmed in 200 memristors each. c) Read noise of 200 conductance states as a function of read cycle.
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a CMOS inverter (T4–T5) is added between the voltage divider 
(M2–T3) and pull-down transistor T6 which is responsible for 
discharging the aMLhi. A high aDL activates T6, corresponding 
to a mismatch operation, thus this right branch is responsible 
for sensing if the input is smaller than the stored value of the 
right boundary encoded by M2. Overall, an analog CAM cell cir-
cuit verifies if an input is within the range stored in the cell.

To operate as dCAM the circuit has been modified, adding 
the capability to sense the discharge current on aMLlo, repre-
senting a distance metric of the input compared with the stored 
data in the row. If the input is close to the stored values, a small 
current is expected to flow in aMLlo and if the input is signifi-
cantly different from the stored values, the current increases 
and discharges aMLhi quickly. During dCAM operation, the 
aMLhi can be either kept at fixed value or precharged. In the 
former case, the current is constant and depends on the voltage 
on aDL and the stored conductance. In the latter case, the cur-
rent changes while the aMLhi discharges but to first approxima-
tion we assume constant while the T2 and T6 are in saturation 
regime. Figure 2c shows a typical array organization of a CAM, 
where an input is provided at the columns and the state of each 
row ML would normally correspond to a bitwise AND operation 
across the individual cells of that row with the input. The array 
now includes the needed dCAM capabilities, including analog 
inputs which are supplied in this case through digital to analog 
converters (DAC) on the columns, and analog outputs which 
can be sensed either on the aMLhi or aMLlo. Figure  2d illus-
trates the sensing circuits used for enabling dCAM operation, 
namely an analog to digital converter (ADC) for sensing the 
voltage on aMLhi and a transimpendence amplifier (TIA) to con-
vert the current flowing in aMLlo into a voltage sensed with an 
analog to digital converter (ADC). In the dCAM training mode, 
analog inputs are applied and by sensing the analog outputs 
and computing the gradients it is possible to optimize many 
parameters (such as storage values i.e., the memristor conduct-
ance, or inputs) for different tasks. After training, depending 
on the application, the dCAM can be operated either by using 
the analog output directly, or as an analog CAM converting the 

voltage on aMLhi into a binary match/mismatch signal with 
sense amplifier after a given clock time tCLK. Table  1 shows a 
direct comparison of different types of CAM concepts.

4. Results and Discussion

4.1. Improved CAM Programming: Learn to Store 
with a Multi-Bit dCAM

In conventional crossbars, choosing the desired conductance to 
program the memristive devices for ideal matrix vector multipli-
cation operation[18] is straightforward as the operation is linear 
(e.g., if a current I is desired when the input is V, the target 
conductance should be G = I/V). This is not the case for analog 
CAMs as the transfer function is inherently nonlinear as sev-
eral voltage/current transformations through transistors are 
involved. By knowing the cell design, it is possible to estimate 
the required memristor conductance to program into an analog 
CAM cell to match a given range, that is, keep the ML charged 
for at least one clock cycle tCLK and discharge it otherwise, as  
described in Algorithm S1, Supporting Information and referred 
here as the Naïve programming (NP) approach (circuit variable 
description in Table S1, Supporting Information). The current 
IML required for discharging aMLhigh in tCLK (mismatch), is first 
computed and then reported as the required conductance of 
M1 and M2. We used the NP approach for programming eight 
levels (or Nbit  = 3) into an analog CAM. Figure  3a shows the 
simulated current IML as a function of input voltage VDL for 
each analog CAM cell (different colors) as a result of program-
ming an equally spaced VDL target between 0.5 and 1.1V (inset) 
in eight analog CAMs arranged in a column, an 8 × 1 array. A 
tolerance of τ = 50mV was added, namely a CAM should match 
if the input Vtarget − τ < VDL < Vtarget + τ. In this case, the single 
input on the VDL is sensed separately by each cell and the cur-
rent IML of each aMLhi is minimized when the input corre-
sponds to the target. Note that the simulation disregards the 
nonlinearity of the memristor conduction given its low impact 

Figure 2.  a) dCAM concept, where analog input are searched and a similarity between input and the analog stored value is returned as output. b) Circuit 
schematic of dCAM (inset shows the range encoding) and c) H×W array organization. d) Analog quantities, that is, VMLhi and IML are sensed by the 
training circuits (ADC and TIA+ADC) and the operating circuit (sense amplifier only) used after training completes.

Table 1.  Comparison between CAM concepts.

Circuit Input Storage Output

TCAM [37] Digital (ternary) Digital (ternary) Digital

Analog CAM [42] Analog Analog Digital

Differentiable CAM [this work] Analog Analog Analog
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in our devices.[42] While this programming algorithm is effec-
tive, it does not completely cancel the currents corresponding 
to target inputs, in order to avoid superposition between levels, 
and a small leakage is still present. For example when giving the 
highest target, that is, VDL = 1.1, a leakage current of Ileak = 0.4 μA 
is flowing from MLhi to MLlow. This can introduce errors when 
considering the same target programmed in a 1 × 8 CAM array, 
or row vector. Figure 3b shows IML as a function of VDL for the 
same pattern of Figure  3a programmed in a row, instead of a 
column. Each cell was tested by keeping all the other to a perfect 
matched (i.e., target) input and sweeping the tested CAM input 
voltage. As the figure shows, a large offset is present due to all 
small currents contributions of each matched cell. To circum-
vent this problem, we developed a CAM-aware iterative program 
and verify algorithm (IPV)[43] as described in Supplementary 
Algorithm S3, Supporting Information. IPV starts by program-
ming the row with the NP (see Algorithm S2, Supporting Infor-
mation), then the row is tested with the target input and if it 
results in a mismatch, NP is repeated again with more stringent 
match/mismatch requirements. To do that, the sense amplifier 
threshold voltage Vsense is slightly increased during the calcula-
tion of the required GM1 and GM2. The process is repeated until 
convergence, that is, until a match is returned after testing with 
the input target vector. Figure 3c shows the same pattern of (a) 
and (b) programmed in an 1 × 8 array efficiently with IPV.

IPV is a solution for programming patterns efficiently in 
analog CAM, however it is not resilient to device/circuit vari-
ations and noise since knowledge about such issues is not 
included in the programming operation. Moreover, an optimal 
δV is difficult to find to achieve a good balance between 
number of iterations and convergence. For this reason, with 
dCAM we developed a Learn to Store (L2S) procedure, which 
exploits the analog in/analog storage/analog output capabilities 
to learn the target vector to store in the memory circuit. Previ-
ously, we developed a compact analog CAM model[43] to quickly 
assess the input/output relationship of large models without 
performing SPICE circuit simulations. Here, we translated 
the models to PyTorch[52] including the dCAM analog capabili-
ties, in order to enable auto-differentiation. L2S can be seen 
as solving a classification problem, where the goal is to learn 
how to output a match in a given dCAM row when applying 
the input target vector. L2S can be performed either in software 
simulations or in hardware, but in both case an accurate model 
of the hardware is needed for computing the gradients.

As an initial test for L2S, we reproduce the results of pro-
gramming with the IPV algorithm, but emerging through 
supervised training instead. We consider at this stage only ideal 
devices (i.e., without noise and variability issues for memristors 
and CMOS circuitry). In order to learn the target vector to store 
of Figure  3c, we treat this as a classification problem, where 
the goal is to program the desired pattern such that it correctly 
accepts the set of correct input patterns, and rejects the set of 
incorrect input patterns. Our study here is performed in simu-
lations where the output analog signals are computed with our 
experimentally-grounded circuit model. In a hardware imple-
mentation of L2S, the row output would be directly measured 
in the hardware shown in Figure  2c. For a given target vector, 
a dataset for learning is created. The training dataset is gener-
ated by combining the input pattern (inset of Figure  4a) that 
should be accepted (labeled as match), with the patterns to reject 
(mismatch) that consist of 1 bit flips of neighboring inputs in 
the multi-bit problem. The training dataset is augmented by 
extracting 100 random analog input values that fall within each 
pattern range (see Figure  S2, Supporting Information). The 
dCAM is initialized with the conductance obtained by program-
ming with NP. The dataset is then applied to the dCAM and con-
ductance learning is performed by optimizing the cross-entropy 
loss of the SoftMax of IML,lo for each row in a CAM, where the 
target ŷ represents the memory address, that is, row number for 
where the target pattern will be within the CAM array. Figure 4a, 
shows the loss as a function of learning epoch demonstrating 
correct minimization. In fact the dCAM input/output relation-
ship after training in Figure  4b is comparable with the result 
obtained with IPV in Figure  3c. Note this result is expected 
since IPV is already iteratively adjusting the conductance based 
on the circuit answer, which is a simplified version of what L2S 
does in a more formal way. Figure 4c shows the final conduct-
ance obtained with L2S as a function of the initial conductance 
(i.e., obtained with NP), where GM1 are reduced to avoid leakage 
currents and hence false mismatches. The shift has a nonlinear 
dependence on the conductance state, as shown in the figure. 
While the resulting behavior is intuitive and matches our intel-
ligent IPV algorithm, it is notable that it was not explicitly pro-
grammed here, but emerged from the learning procedure.

The effectiveness of L2S is further quantified by using it in 
a CAM based acceleration task. We recently developed a tree 
based ML inference accelerator that utilizes the novel ine-
quality testing possible in an analog CAM.[43] Each root to leaf 

Figure 3.  a) Programming equally spaced VDL pattern (inset) in an 8 × 1 analog CAM array with Naïve programming (NP). Each line represents the 
input–output relationship for different cells in the 8 × 1 array, where color is the target voltage programmed in it. b) Same pattern programmed with 
NP in a 1 × 8 array showing an undesired current offset. c) Same pattern correctly programmed in a 1 × 8 array with CAM aware iterative program and 
verify (IPV) which significantly reduces the current.
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path (branch) of a decision tree (DT) is mapped to an analog 
CAM array row, as shown in Figure  S3, Supporting Informa-
tion, and thus allows single-step tree inference. The accuracy 
of the inference operations is critically dependent in faithfully 
programming the stored CAM words that encode these DT 
inequality values. We assessed the capabilities of L2S in dCAM 
for this application, using the cross-entropy loss of the SoftMax 
of the voltage VML, hi after a clock cycle tCLK. This corresponds to 
a training of the dCAM to efficiently perform DT inference (see 
Figure  S4a, Supporting Information). Note that this is a dif-
ferent operation compared to the above multi-bit storage appli-
cation, since during inference the sense amplifier is used. First, 
we trained a DT model for classification of the Iris Dataset[53] 
with conventional tools (i.e., Python Sk-Learn) offline. After we 
extracted the trained DT thresholds, we utilize dCAM to learn 
how to store them in the optimal way with L2S. Supplementary 
Figure  4b shows the loss as a function of the training epochs 
demonstrating correctly minimization. Finally, we compared 
L2S with other non-gradient based algorithms as shown in 
Figure  4d. The accuracy in DT inference for the three algo-
rithms, namely NP, IPV, and L2S is plotted, demonstrating that 
only L2S performs inference with equivalent software accuracy 
(dashed line). Note that this result was obtained with ideal com-
ponents, thus noise-less memristor and defect/parasitic free 
CMOS circuitry. By inserting in the compact model knowledge 
about the variability, noise and parasitics present in the circuit 
we next show it is possible to compensate for such issues.

4.2. Memristor Variability Compensation

Memristor devices can be programmed to multiple levels or 
conductance states. However, as the programming operation 
contains stochastic processes,[18] the programmed conductance 
shows variability, as previously seen in Figure 1. By embedding 
a stochastic conductance with a constant standard deviation 
σNR for each level in the dCAM during training, it is possible to 
program the conductance in an optimal way regardless of vari-
ation. Note that this procedure is similar to the in situ training 
operation for conventional crosspoint arrays.[8] Figure 5a shows 
the error during inference ε = ASW − AHW, with ASW ideal soft-
ware accuracy and AHW the inference accuracy after deploying 

the model on analog CAM or dCAM, as a function of the pro-
gramming variation σNR. The calculation was repeated for the 
three programming strategies of NP and IPV for analog CAM 
and L2S for dCAM. While analog CAM error increases even 
for small σNR, dCAM is able to compensate the noise up to 
≈10% without loss in accuracy due to the use of a training algo-
rithm. Memristors are also subject to read noise, meaning that 
the conductance also varies through time.[18] We considered 
random conductance fluctuations in time with a normal distri-
bution across the programmed value and similarly assessed the 
resulting error during inference for the different programming 
approaches. Figure  5b shows the ε as a function of the read 
noise standard deviation σNR demonstrating that dCAM main-
tains an almost constant accuracy even for large σNR.

4.3. dCAM for Optimizing Circuit Performance

4.3.1. Reducing Power by CMOS Sub-Threshold Current Variability 
Compensation

An analog CAM can have large static power consumption due 
to current flowing from SLhi to SLlo in the voltage divider opera-
tion.[43] Lower power analog CAM operations are possible by 
operating the input transistors T1 and T3 in the subthreshold 
regime, limiting static current and thus static power. Another 
benefit to this operational regime is that the smaller VDL cor-
responds to adopting smaller conductance as stored thresholds, 
which is also beneficial for total search power. Unfortunately, 
subthreshold conduction of transistors suffers from large 
variability due to the exponential dependence of the transistor 
threshold voltage VTH which is subject to process variation.[54] 
Figure 5c shows the probability distribution of the subthreshold 
transistor current error, namely ΔImem  = Isub/Isub, ideal where 
Isub is the current affected by process variation and Isub, ideal 
the nominal one, for a threshold variation / 10THTH VVσ = %,[54] 
where a large variation is evident. By inserting information 
about the process defect in the dCAM model, we tested the 
ability to learn high inference accuracy while simultaneously 
reducing the minimum voltage Vmin applied to VDL to mini-
mize power. Figure  5d shows the inference error ε as a func-
tion of Vmin demonstrating that the learning procedure in 

Figure 4.  a) Training Loss during learning as a function of epochs. The loss corresponds to the cross-entropy of IML SoftMax S function (see inset 
equation).The dataset was created by inserting dummy rows for each 1-bit mismatch. b) Pattern of Figure 3 learned by the dCAM with L2S replicating 
the same result of IPV. c) Final conductance after L2S as a function of initial conductance, namely the conductance obtained with NP. d) DT inference 
accuracy comparison for three programming strategies with digital software accuracy in dashed line.
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the dCAM is robust to process variation while analog CAM 
implementation both with NP and IPV strategies are strongly 
affected. The result is that the dCAM enables lower power con-
sumption for CAM applications. By considering an inference 
iso-accuracy with analog CAM, Figure 5e shows the energy per 
node per decision[37,43] which is reduced by a factor 3× with L2S 
and dCAM compared with IPV and analog CAM.

4.3.2. Higher Throughput and Lower Energy by Parasitic 
Capacitance Compensation

Finally, we test dCAM in compensating the parasitic capaci-
tance which is formed on the MLhi for each cell that is added 
in a row. The overall capacitance can be computed as CML  = 
CPC  + Csense  + WCCAM where CPC is the output capacitance 
of the precharge circuit, Csense is the input capacitance of the 
sense amplifier circuit, W is the total number of CAM cells in 
a row and CCAM the parasitic capacitance which correspond to 
the drain–source capacitance of transistor T2 and T6 connected 
to the aMLhi.[43] Note that during NP/IPV the parasitic capaci-
tance is considered, but without the collective behavior of dis-
charge currents. By embodying this information in the dCAM 
model, it is possible to learn efficiently the proper conductance 
to program in order to maximize the clock speed as shown in 
Figure  5f. Smaller clocks corresponds to larger throughput, 
namely the number of decision per second that can be inferred 
by the CAM. Figure 5g shows the throughput for analog CAM 
with IPV and dCAM with L2S which is 2× larger for the latter. 
Note that after L2S dCAM is operated as an analog CAM thus 
does not require analog to digital conversion of the output, thus 
the high throughput. As a result, by storing a model with L2S 

optimizing both for process variation and parasitic mitigation 
it is possible to reduce the energy consumption of the SL by a 
factor 6× as shown in the plot of Figure 5h. This is due to the 
joint effects of static power minimization by using subthreshold 
input transistors and parasitic capacitance compensation.

4.4. Solving k-SAT Optimization Problems

The dCAM enables entirely new functionality not typically 
tackled with CAM circuits. In particular, we studied the appli-
cation to Boolean satisfiability (k-SAT), a class of NP-complete 
problems,[55] to which many other optimization problems can 
be mapped.[56] An example of a k-SAT (with k = 3) problem is 
finding the binary variable assignments that return as output 
“1” of a given conjunctive normal form of equations. As an 
example, given the Boolean expression

x y z x y z( ) ( )∨ ¬ ∨ ∧ ¬ ∨ ¬ ∨ ¬ 	 (1)

the variable assignment [1,0,0] to the inputs satisfies the expres-
sion. Interestingly, OR-type CAMs can act as k-SAT filter, namely 
they can be used to verify if an input set of variables satisfies the 
Boolean expression.[57] We extended this concept to the dCAM in 
order to learn the proper set of inputs which solves the encoded 
problem. Figure 6a shows the needed modifications to the CAM 
cell to perform a three-way OR operation. Each CAM cell returns 
a match if at least one of the three input literals is within the 
range encoded by the memristors. Given the clauses of Equa-
tion (1), they can be mapped as “1” or “0” in the 3-way OR type 
CAM. If a literal is negated a “1” should be programmed, that 
is, the lower branch memristor should be programmed to a 

Figure 5.  Efficient inference of DT model with analog CAM. a) Inference error ε = ASW − AHW with ASW software baseline and AHW hardware accuracy, as 
a function of programming variability standard deviation for the three programming strategies. b) Inference error ε as a function of read noise standard 
deviation for the three strategies. c) Distribution of subthreshold transistor current error for a 10% standard deviation of the error on the threshold. 
d) Inference ε as a function of minimum applied VDL for the three programming strategies. e) Iso-accuracy SL static power consumption per node for 
IPV and L2S. The latter can operate at lower Vmin. f) Inference error ε as a function of clock time tCLK for sensing MLhi. g) Resulting throughput for the 
different programming strategies. h) Total resulting energy consumption on the SL path.
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reasonable middle state, for example, G = 50 μS and the upper 
branch memristor to the state corresponding to a do not care, or 
always match, which in this case is a low conductance state. The 
opposite mapping would apply to a literal which is not negated, 
thus the lower branch memristor should be programmed to a 
high conductance state and the upper branch memristor to a 
reasonable middle state. If the proper set of input, for example, 
[1,0,0], is applied to the transistors connected to the MLhi (per-
forming the OR operation) remain off, otherwise they turn on 
and the current IML is a measure of how distant the candidate 
input is from the correct solution. This analog information can 
be differentiated and gradient-based searching or annealing algo-
rithms used to find the optimum set of inputs that minimizes the 
output. Note that while memristor values do not change during 
the solution of k-SAT, it is required to use them instead of simple 
resistors in order to program different Boolean expressions when 
encoding a new problem into the hardware. Figure 6b shows a 
circuit for solving k-SAT problems with the OR-type dCAM con-
cept. Given a problem with N variables, C clauses and k literals 
a k-way OR type dCAM should be used. The inputs are applied 
with an N channels DAC and the resulting output current IML is 
read with a TIA and ADC chain and fed into an optimizer.

4.4.1. Comparison with Ising Solvers

We tested the dCAM with 100 three-SAT problems taken from 
the SATLIB-uf20.91 dataset,[58] consisting of instances with 
N = 20 variable and C = 91 clauses, which is considered to be 

in the spectrum of hard problems because the ratio of clauses 
to variables C/N ≈ 4.5.[59] We compared dCAM with the popular 
Ising approach, which maps 3-SAT problems to an Ising Ham-
iltonian by first mapping it to a maximum independent set 
(MIS) problem, and finds the ground states.[60] As a hardware 
approach for comparison, we considered a memristive Hopfield 
neural network[12] which can encode Ising problems and solve 
at high throughput. But even this highly efficient memristor 
solver requires a total of (kC)2 memristors, resulting in poor 
scaling. Interestingly, the dCAM solver only needs 2kC memris-
tors, scaling linearly with the problem size. Figure 7a shows the 
dCAM error ε = IML/IML, max, with IML, max the saturation current 
of the transistors as a function of update cycles. Noise is added 
externally to the solver and different stochastic approaches 
such as simulated annealing and/or basin hopping can be per-
formed. This can be done either by software tools or directly in 
hardware.[12,14] Figure  7b shows the Ising energy for the same 
problems as a function of the update cycles, which requires a 
larger number of cycles to converge. Figure 7c shows the prob-
ability to solve a problem as a function of the update cycle for 
dCAM (dCAMsingle) and an Ising model (Isingsingle) demon-
strating the better performance of dCAM up to 1.5×. dCAM 
was also tested with all the problems to compute the average 
probability of solving a problem (dCAMmulti in Figure 7c) which 
is in good agreement with the problem chosen. Figure  7d 
shows the time to solution (TTS),[12] namely the time required 
to have a 99% probability of finding the right solution for the 
two implementation, including an average over 100 problems 
for dCAM accelerator. The results show that dCAM has a 

Figure 6.  a) Three-way OR-type dCAM which results in a “Match” if any of the three DL inputs satisfies the memristor-encoded logical expression 
b) k-SAT solution with dCAM. Given a problem with N variables, C clauses and k literals this can be encoded in C k-way analog CAM cells whose 
output is differentiated and given to an N-channel DAC driving the aDL. The programmed conductances encode the problem, while the correct input 
is learned. Noise is added to escape local minima (i.e., IML > 0 for multiple iterations) in the solution space. Different techniques such as simulated 
annealing or basin hopping can be applied. When IML ≈ 0 the problem is solved.

Figure 7.  Example runs showing error ε for a) dCAM optimizer and b) Ising energy for an Ising solver as a function of updates for two different problem 
initializations. Comparison of probability to correctly solve a c) three-SAT problem and best time to solution in number of updates (left axis) and 
d) milliseconds (right axis) for a 99% probability of success for dCAM optimizer (dCAMsingle) and Ising solver (Isingsingle). dCAM optimizer was 
also tested (dCAMmulti) with 100 different three-SAT problems to show the average behavior.
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significant advantage of 2× faster compared with Ising solver, 
in addition to reduced requirements and better scaling in the 
number of memristive elements. It is thus anticipated that the 
performance improvement would be even more striking for 
larger problem sizes. Interestingly, our result is close to run-
ning miniSAT algorithm, among the top SAT solvers, in an 
FPGA[61], which takes ≈0.8 ms and consuming ≈3 W. Based on 
previous results[42,43] we expect our solver to have a peak power 
consumption of ≈5mW, suggesting at least two orders of mag-
nitude lower energy to solution. With this promising perfor-
mance indication, future studies will be needed to expand this 
comparison to include more problem classes, variable sizes, 
benchmark instances, and hardware approaches.

5. Conclusion

Here we demonstrated the novel concept of a differentiable 
analog nonvolatile CAM. This new concept enables the ability 
to learn what patterns to store to improve overall accuracy, 
depending on the desired application. This was demonstrated 
in the programming approach for tree based ML acceleration 
in CAMs to compensate for device and circuit nonidealities. 
Beyond setting the patterns to store and improving robustness 
to variability, gradients of the output can be taken with respect 
to circuit parameters in order to yield performance improve-
ments such as lower power, energy, or increased throughput. 
Finally, the concept was extended to solving optimization 
problems, where the constraints are mapped in the CAM and 
the dCAM learns the optimal set of inputs to satisfy Boolean 
expressions. We envision the use of dCAM as a core building 
block of fully differentiable computing system employing 
multiple types of analog compute operations and memories, 
and thus broadening the set of application even further than 
those shown here.

6. Experimental Section
CMOS and Memristor Integration Process: The memristors were 

monolithically integrated on CMOS fabricated in a 180 nm technology 
node. The integration starts with a removal of silicon nitride and oxide 
passivation with reactive ion etching and a buffered oxide etch dip. 
Chromium and platinum bottom electrodes were then patterned with 
e-beam lithography and metal lift-off process, followed by reactive 
sputtered 4.5 nm tantalum oxide as switching layer, with 10% of 
oxygen in a Ar:O2 mixture. The BE metal was thus Cr/Pt, with Cr as an 
adhesion layer. The device stack was finalized by e-beam lithography 
patterning of sputtered tantalum and platinum metal as top electrodes. 
The TE was then Ta/Pt/Cr, with Pt a protection for oxidation of Ta and 
Cr as a etch mask to etch Pt and Ta. The effective electrodes for the 
memristors (making direct contact with TaOx) were Pt for BE and Ta 
for TE. More information about the fabrication process and memristor 
characterization can be found in refs. [44,45].

Memristor Characterization: Memristor devices were characterized in 
a fully integrated system consisting in three 64 × 64 arrays of memristors 
in 1-transistor-1-memristor configuration, routing, and sensing 
circuits.[45] The system was taped out in 180 nm CMOS technology and 
memristors integrated in Hewlett Packard Labs clean room facilities. 
Program and verify algorithm were used for programming the desired 
conductance by an increasing either the gate or top electrode voltage 
during programming. First, a read operation was performed to each 

device. If a memristor conductance Gij was bigger than its target Gtarget,ij, 
namely Gij > Gtarget, ij + gtol,in where gtol,in is the internal tolerance, a reset 
operation was performed by increasing at each step the BE voltage 
from 0.5 to 1.5 V with steps of 0.1 V and increasing the gate voltage 
from 0.5 to 3 V. In contrast, if Gij  < Gtarget,ij  − gtol,in a set operation is 
performed by increasing at each step the TE voltage from 0.5 to 2 V 
with steps of 0.1 V and increasing the gate voltage from 0.5 to 1.5 V. 
The programming operation was repeated until convergence, namely 
until |Gij  − Gtarget, ij|  < gtol,in. While programming a given memristor, it 
was possible that another memristor in another location changes its 
conductance even if its programming operation already converged, 
due to both device and circuit nonidealities. For this reason, if 
|Gij − Gtarget,ij| > gtol,out, where gtol,out > gtol,in is the external tolerance, the 
programming operation is repeated. More details about the program 
and verify algorithm can be found in ref. [62].

dCAM Modeling: dCAM was modeled in PyTorch environment 
as a module which includes the current–voltage transfer function 
of transistor. Memristor read and program noise was modeled as a 
Gaussian distribution with constant σG/G. For read noise, the samples 
were taken from the distribution at each iteration while for programming 
variation samples were taken only when the memristor conductance 
was updated. Process variations were modeled as VT initialization by 
sampling before training from a Gaussian distribution. Fitting values for 
the model and parasitic were extracted from the taped-out chip at 180 nm 
technology[42] and post layout simulation at 16 nm technology.[42,43]
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